Course code |
07 72 5260 30 |
ECTS credits |
3 |
Course name in language of instruction |
Programming in Python |
Course name in Polish |
Programming in Python |
Course name in English |
Programming in Python |
Language of instruction |
English |
Type of classes
Teaching hours per semester |
|
Lecture |
Tutorials |
Laboratory |
Project |
Seminar |
Other |
E-learn. |
Contact hours |
15 |
|
30 |
|
|
5 |
|
Distance learning |
No |
No |
No |
No |
No |
No |
No |
Weighted grades |
0.30 |
|
0.70 |
|
|
0 |
|
|
Unit running the course |
Instytut Informatyki |
Course coordinator |
dr inż. Przemysław Nowak |
Course instructors |
dr inż. Przemysław Nowak, mgr inż. Jakub Walczak |
Prerequisites |
Fundamentals of Programming, Object Oriented Programming, Computer Data Analysis |
Course learning outcomes |
- The student can characterize the Python programming language.
- The student can analyze code written in Python.
- The student can develop code in Python for data analysis and visualization.
- The student can develop programs in Python that involve a command-line interface.
- The student can develop web applications in Python using a web framework.
|
Assessment methods |
Oral presentations of solutions to laboratory assignments intermingled with oral quizzes related to the lecture material: outcomes 1, 2, 3, 4, 5.
|
Programme learning outcomes |
|
Grading policies |
Lecture: answers to questions related to the lecture material during oral presentations of solutions to laboratory assignments.
Laboratory: oral presentations of solutions to laboratory assignments and answers to related questions. |
Course content |
LECTURE:
1. Introduction to the Python programming language.
2. Numerical computing and plots (NumPy, Matplotlib, SciPy).
3. Data analysis and visualization (Pandas, Seaborn).
4. Advanced code organization (namespaces, closures, decorators, object-oriented programming, exceptions).
5. Input-output operations and the standard library.
6. Web frameworks (Flask, Flask-SQLAlchemy, Jinja).
LABORATORY:
1. Managing Python virtual environments.
2. Conducting a statistical analysis for a given dataset and documenting it as a Jupyter notebook.
3. Implementation of a simulation of a simple multiagent system in text mode.
4. Implementation of a simple web application. |
Basic reference materials |
- The Python Tutorial: https://docs.python.org/3/tutorial/
- Python Programming: https://en.wikibooks.org/wiki/Python_Programming
- Scientific Python Lectures: https://lectures.scientific-python.org/
- Think Python: How to Think Like a Computer Scientist: http://www.greenteapress.com/thinkpython/html/
- Dive Into Python 3: http://diveintopython3.problemsolving.io/
|
Other reference materials |
- Dokumentacja języka Python: https://docs.python.org/3/
- Dokumentacja NumPy: https://numpy.org/doc/stable/
- Dokumentacja SciPy: https://docs.scipy.org/doc/scipy/
- Dokumentacja Matplotlib: https://matplotlib.org/
- Dokumentacja Seaborn: https://seaborn.pydata.org/
- Dokumentacja Jupyter Notebook: https://jupyter-notebook.readthedocs.io/
- Dokumentacja Flask: https://flask.palletsprojects.com/
- Dokumentacja Jinja: https://jinja.palletsprojects.com/
- Dokumentacja SQLAlchemy: https://docs.sqlalchemy.org/
|
Course workload
|
Type of classes |
Teaching hours |
Lecture |
15 |
Laboratory |
30 |
Other |
5 |
SUM : |
50 |
|
Comments |
Category „Other” includes participation in office hours, practical forms of assessment methods, scientific seminars, and workshops organized in cooperation with the business community. |
Updated on |
2024-09-13 16:25:11 |